OFFSET
1,3
COMMENTS
Computing a(n) is equivalent to finding the smallest k, if any, that solves the Diophantine equation Fibonacci(n-1)*k + Fibonacci(n-2) = x^2.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..375
EXAMPLE
Letting f(1)=1, f(2)=6 gives f(10)=15^2. No smaller choice for f(2) makes f(10) a square, so a(10)=6.
MATHEMATICA
a[1]=a[2]=1; a[3]=3; a[n_] := Block[{x, r = Fibonacci[n - 2], m = Fibonacci[n - 1]}, x = Quiet@ PowerMod[r, 1/2, m]; If[IntegerQ@x, (x^2 - r)/m, 0]]; Array[a, 60]
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Jan 28 2014
STATUS
approved