login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236490
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise
9
81, 583, 583, 3987, 9839, 3987, 26091, 156087, 155757, 26091, 167095, 2339313, 5674353, 2330087, 167095, 1054515, 34149421, 192914141, 192685833, 33951181, 1054515, 6595119, 489696691, 6339553813, 14826588345, 6319589033, 486130993
OFFSET
1,1
COMMENTS
Table starts
.......81.........583............3987..............26091..............167095
......583........9839..........156087............2339313............34149421
.....3987......155757.........5674353..........192914141..........6339553813
....26091.....2330087.......192685833........14826588345.......1098468030593
...167095....33951181......6319589033......1095464601321.....182308906034159
..1054515...486130993....202321147069.....78726807207771...29352647489506731
..6595119..6894201989...6387140371741...5564322438106237.4636588642195617443
.41000659.97206875033.199871719030679.389132366606307561
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 8*a(n-1) -a(n-2) -64*a(n-3) -14*a(n-4) +88*a(n-5) +8*a(n-6) -24*a(n-7)
k=2: [order 30]
Empirical for row n:
n=1: a(n) = 8*a(n-1) -a(n-2) -64*a(n-3) -14*a(n-4) +88*a(n-5) +8*a(n-6) -24*a(n-7)
n=2: [order 34]
EXAMPLE
Some solutions for n=2 k=4
..1..0..0..2..0....1..0..2..1..0....1..0..2..0..2....1..0..1..1..0
..0..1..1..0..2....0..0..0..0..2....0..0..1..0..2....0..0..0..2..1
..1..1..0..1..1....1..0..1..0..2....1..1..1..1..1....0..1..1..0..2
CROSSREFS
Column and row 1 are A235432
Sequence in context: A235742 A236082 A235737 * A235437 A235432 A206064
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 27 2014
STATUS
approved