%I
%S 0,1,1,3,2,3,1,5,5,5,2,5,1,2,2,7,4,8,4,7,4,2,1,7,4,3,6,7,4,6,1,9,7,6,
%T 7,10,5,5,4,9,4,6,2,4,6,3,2,9,6,8,6,6,4,9,5,8,4,3,2,8,2,2,4,12,10,10,
%U 7,8,7,9,5,13,7,7,8,8,7,7,4,10,11,9,8,11
%N Number of zero digits in all representations of n in bases 2,3,...,10.
%C Whether exists n>1 for which a(n)=0?
%C a(n)=1 for 2,3,7,13,23,31,... Is this sequence infinite?
%H Peter J. C. Moses, <a href="/A236455/b236455.txt">Table of n, a(n) for n = 1..1000</a>
%e n=9 in its representations in bases 2,...,10 has zeros only in bases 2,3,9: 1001,100,10 respectively. The total number of zeros is 5. So a(9)=5.
%t Map[Length[Select[Flatten[IntegerDigits[#,Range[2,10]]],#==0&]]&,Range[100] (* _Peter J. C. Moses_, Jan 26 2014 *)
%K nonn,base
%O 1,4
%A _Vladimir Shevelev_, Jan 26 2014
