

A236452


Number of primes between successive Ramanujan primes.


1



3, 1, 2, 2, 1, 1, 1, 0, 4, 0, 1, 2, 3, 0, 2, 1, 0, 6, 0, 0, 0, 0, 2, 0, 2, 2, 0, 4, 0, 2, 0, 4, 0, 0, 1, 0, 0, 3, 3, 0, 1, 7, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 1, 1, 2, 3, 1, 0, 0, 2, 0, 3, 6, 0, 0, 1, 2, 2, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 4, 1, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The Ramanujan primes are given in A104272.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000


EXAMPLE

A104272(n) = 2, 11, 17, 29, 41, 47, 59, 67, 71, ...
a(1) = 3 because there are 3 primes between 2 and 11;
a(2) = 1 because there is 1 prime between 11 and 17;
a(3) = 2 because there are 2 primes between 17 and 29;
a(8) = 0 because there are no prime between 67 and 71.


MATHEMATICA

lst={}; nn=1000; R=Table[0, {nn}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s]; If[s<nn, R[[s+1]]=k], {k, Prime[3*nn]}]; R=R+1; Do[p=0; Do[If[PrimeQ[a], p++ ], {a, R[[n]]+1, R[[n+1]]1}]; AppendTo[lst, p], {n, 100}]; lst


CROSSREFS

Cf. A104272.
Sequence in context: A263211 A287571 A214316 * A056529 A087282 A105973
Adjacent sequences: A236449 A236450 A236451 * A236453 A236454 A236455


KEYWORD

nonn


AUTHOR

Michel Lagneau, Jan 26 2014


STATUS

approved



