login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that m^2 + n^2/m^2 is prime for every m|n.
3

%I #18 Jun 03 2017 01:59:55

%S 1,2,6,10,14,26,74,94,130,134,146,170,206,326,386,466,470,634,1094,

%T 1354,1570,1654,1766,1966,2174,2766,3046,3254,3274,3446,4006,4174,

%U 4666,4754,4954,5086,5774,5834,6046,6866,6926,7114,7466,8854,9046,9494,10006,10126

%N Numbers n such that m^2 + n^2/m^2 is prime for every m|n.

%C If n = x*y then x^2 + y^2 is a prime.

%C These n > 1 must be even and squarefree.

%C Conjecture: the set of such n is infinite.

%C The conjecture follows from, e.g., Schinzel's hypothesis H. - _Charles R Greathouse IV_, Jan 28 2014

%H Giovanni Resta, <a href="/A236423/b236423.txt">Table of n, a(n) for n = 1..1000</a>

%t Select[Range[10^4], (d = Divisors[#]^2; And @@ PrimeQ[d + #^2/d]) &]) (* _Giovanni Resta_, Jan 26 2014 *)

%o (PARI) isok(n) = sumdiv(n, d, isprime(d^2 + n^2/d^2)) == numdiv(n); \\ _Michel Marcus_, Jan 25 2014

%o (PARI) is(n)=if(n%4!=2, return(n==1)); my(f=factor(n)); if(vecmax(f[,2])>1,return(0)); fordiv(f,m,if(!isprime(m^2+(n/m)^2),return(0)); if(m^2>n,break));1 \\ _Charles R Greathouse IV_, Jan 28 2014

%Y Cf. A080715.

%Y Subsequence of A005574. - _Michel Marcus_, Jun 03 2017

%K nonn

%O 1,2

%A _Thomas Ordowski_, Jan 25 2014

%E More terms from _Michel Marcus_, Jan 25 2014