Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 07 2014 10:16:27
%S 0,6,3,15,741,153,25878,3828,16653,253,4753,23653,6328,53956,9730,
%T 191890,21115,140185,1225,26335,317206,3160,38503,2108431,37950,
%U 121278,1440905403,53483653,201733741,58595725,22663524351,787786971,23483020686,1475521326
%N Sequence of distinct least triangular numbers such that the arithmetic mean of the first n terms is also a triangular number. Initial term is 0.
%C Sequence is believed to be infinite. If a(31) exists, it will be greater than 10^10.
%C a(31)=22663524351. - _Jon E. Schoenfield_, Feb 07 2014
%e a(1) = 0.
%e a(2) must be a triangular number such that (a(1)+a(2))/2 is triangular. Thus, a(1) = 6.
%e a(3) must be a triangular number such that (a(1)+a(2)+a(3))/3 is triangular. Thus, a(3) = 3.
%e ...and so on
%o (Python)
%o def Tri(x):
%o ..for n in range(10**10):
%o ....if x == n*(n+1)/2:
%o ......return True
%o ....if x < n*(n+1)/2:
%o ......return False
%o ..return False
%o def TriAve(init):
%o ..print(init)
%o ..lst = []
%o ..lst.append(init)
%o ..n = 1
%o ..while n*(n+1)/2 < 10**10:
%o ....if n*(n+1)/2 not in lst:
%o ......if Tri(((sum(lst)+int(n*(n+1)/2))/(len(lst)+1))):
%o ........print(int(n*(n+1)/2))
%o ........lst.append(int(n*(n+1)/2))
%o ........n = 1
%o ......else:
%o ........n += 1
%o ....else:
%o ......n += 1
%Y Cf. A000217.
%K nonn
%O 1,2
%A _Derek Orr_, Jan 25 2014
%E More terms from _Jon E. Schoenfield_, Feb 07 2014