login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A236366
a(n) is the concatenation of the numbers k, 2 <= k <= 9, such that the base-k representation of n is a palindrome; a(n) = 0 if there is no such base.
1
23456789, 3456789, 2456789, 356789, 246789, 5789, 2689, 379, 28, 349, 0, 5, 3, 6, 24, 37, 24, 58, 0, 39, 246, 0, 3, 57, 4, 35, 28, 36, 4, 9, 25, 7, 2, 4, 6, 58, 6, 4, 0, 379, 5, 4, 6, 0, 28, 45, 0, 7, 6, 79, 24, 35, 0, 8, 46, 3, 57, 0, 4, 9, 6, 5, 248, 7, 248
OFFSET
1,1
LINKS
EXAMPLE
Let n = 29. In bases 2, 3, ..., 9 the representations of 29 are 11101_2, 1002_3, 131_4, 104_5, 45_6, 41_7, 35_8, 32_9. In this list only 131_4 is a palindrome, so a(29) = 4.
MATHEMATICA
Table[FromDigits[1+Flatten[Position[Map[Reverse[#]==#&, Map[IntegerDigits[n, #]&, Range[2, 9]]], True]]], {n, 50}]
PROG
(Python)
from sympy.ntheory import digits
def c(n, b): d = digits(n, b)[1:]; return d == d[::-1]
def a(n): return int("0"+"".join(d for d in "23456789" if c(n, int(d))))
print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Sep 21 2022
CROSSREFS
Sequence in context: A183736 A105238 A252396 * A097617 A160402 A243364
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Jan 23 2014
EXTENSIONS
Name clarified by Jon E. Schoenfield, Sep 21 2022
STATUS
approved