login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays colored with the sets of distinct values in every 2X2 subblock
9

%I #4 Jan 19 2014 12:28:09

%S 81,414,414,2148,2502,2148,11064,16128,16128,11064,57132,104436,

%T 146568,104436,57132,294648,676980,1351296,1351296,676980,294648,

%U 1520856,4389660,12511728,18147240,12511728,4389660,1520856,7845624,28462080

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays colored with the sets of distinct values in every 2X2 subblock

%C Table starts

%C ........81........414.........2148...........11064.............57132

%C .......414.......2502........16128..........104436............676980

%C ......2148......16128.......146568.........1351296..........12511728

%C .....11064.....104436......1351296........18147240.........244951596

%C .....57132.....676980.....12511728.......244951596........4851646302

%C ....294648....4389660....115757328......3314019456.......96273257880

%C ...1520856...28462080...1072589616.....44844204096.....1913809658142

%C ...7845624..184549536...9925448784....606910061856....38000812688892

%C ..40488216.1196622156..91969145856...8213634056940...755541000404862

%C .208893336.7758928296.851086457904.111161636064708.15002127360689268

%H R. H. Hardin, <a href="/A236155/b236155.txt">Table of n, a(n) for n = 1..127</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +18*a(n-2) +16*a(n-3) +12*a(n-4) -12*a(n-5)

%F k=2: [order 8]

%F k=3: [order 23] for n>26

%F k=4: [order 62] for n>66

%e Some solutions for n=3 k=4

%e ..0..0..1..2..1....0..0..2..2..1....0..0..1..2..2....0..0..0..1..2

%e ..0..0..0..1..2....0..1..2..2..0....0..0..0..0..0....1..0..0..0..0

%e ..1..0..0..0..2....2..2..1..0..0....2..0..0..1..2....0..2..2..1..1

%e ..2..0..1..2..2....1..1..0..1..2....1..2..2..2..2....0..0..1..2..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 19 2014