login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the sum of each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise
5

%I #4 Jan 19 2014 06:25:13

%S 81,576,576,3992,9979,3992,26088,169680,169680,26088,167892,2634205,

%T 7147799,2634205,167892,1060410,40097396,271135379,271135379,40097396,

%U 1060410,6648825,587963980,10003171144,25485868729,10003171144,587963980

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the sum of each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise

%C Table starts

%C .........81...........576............3992.............26088.............167892

%C ........576..........9979..........169680...........2634205...........40097396

%C .......3992........169680.........7147799.........271135379........10003171144

%C ......26088.......2634205.......271135379.......25485868729......2353737191047

%C .....167892......40097396.....10003171144.....2353737191047....558542932337300

%C ....1060410.....587963980....349054240169...204552132539376.126138961904040570

%C ....6648825....8523145663..11883153992874.17233100445331692

%C ...41411637..121700475056.392842405587563

%C ..257111073.1728432778182

%C .1592383950

%H R. H. Hardin, <a href="/A236082/b236082.txt">Table of n, a(n) for n = 1..60</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 12]

%F k=2: [order 82]

%e Some solutions for n=2 k=4

%e ..0..0..0..2..1....0..0..0..1..0....1..0..1..0..2....0..0..0..1..0

%e ..0..0..2..2..1....0..0..1..0..2....0..0..2..0..1....0..0..1..0..1

%e ..2..0..2..1..2....0..1..1..0..2....0..2..2..2..2....1..1..1..1..2

%Y Column 1 is A235737

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 19 2014