login
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the sum of each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise
5

%I #4 Jan 19 2014 06:25:13

%S 81,576,576,3992,9979,3992,26088,169680,169680,26088,167892,2634205,

%T 7147799,2634205,167892,1060410,40097396,271135379,271135379,40097396,

%U 1060410,6648825,587963980,10003171144,25485868729,10003171144,587963980

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the sum of each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise

%C Table starts

%C .........81...........576............3992.............26088.............167892

%C ........576..........9979..........169680...........2634205...........40097396

%C .......3992........169680.........7147799.........271135379........10003171144

%C ......26088.......2634205.......271135379.......25485868729......2353737191047

%C .....167892......40097396.....10003171144.....2353737191047....558542932337300

%C ....1060410.....587963980....349054240169...204552132539376.126138961904040570

%C ....6648825....8523145663..11883153992874.17233100445331692

%C ...41411637..121700475056.392842405587563

%C ..257111073.1728432778182

%C .1592383950

%H R. H. Hardin, <a href="/A236082/b236082.txt">Table of n, a(n) for n = 1..60</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 12]

%F k=2: [order 82]

%e Some solutions for n=2 k=4

%e ..0..0..0..2..1....0..0..0..1..0....1..0..1..0..2....0..0..0..1..0

%e ..0..0..2..2..1....0..0..1..0..2....0..0..2..0..1....0..0..1..0..1

%e ..2..0..2..1..2....0..1..1..0..2....0..2..2..2..2....1..1..1..1..2

%Y Column 1 is A235737

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 19 2014