login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays colored with the difference of the upper median and the lower median in each 2X2 subblock
8

%I #4 Jan 18 2014 15:33:13

%S 81,384,384,1848,2460,1848,8856,14980,14980,8856,42724,93640,116786,

%T 93640,42724,205660,595416,965344,965344,595416,205660,990076,3752292,

%U 8289258,11384132,8289258,3752292,990076,4760380,23516900,68613596

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays colored with the difference of the upper median and the lower median in each 2X2 subblock

%C Table starts

%C ........81........384.........1848...........8856............42724

%C .......384.......2460........14980..........93640...........595416

%C ......1848......14980.......116786.........965344..........8289258

%C ......8856......93640.......965344.......11384132........135945364

%C .....42724.....595416......8289258......135945364.......2282216166

%C ....205660....3752292.....68613596.....1562942580......36483535032

%C ....990076...23516900....570818506....18041076392.....590896758666

%C ...4760380..147865936...4747089488...210792493144....9608835890536

%C ..22914572..931263424..39848021722..2453096266960..156707889598596

%C .110251484.5858644440.330427763000.28456755301120.2530161441550248

%H R. H. Hardin, <a href="/A236035/b236035.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 10]

%F k=2: [order 19]

%F k=3: [order 92] for n>95

%e Some solutions for n=3 k=4

%e ..0..1..1..2..2....0..2..1..2..1....0..1..1..2..2....0..0..1..1..2

%e ..0..1..0..0..2....0..2..1..0..2....0..2..1..2..2....0..1..0..1..2

%e ..0..0..2..0..1....1..0..1..0..0....2..2..0..1..0....2..2..1..0..1

%e ..1..1..1..0..0....0..0..2..1..2....0..0..0..1..1....0..2..1..2..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 18 2014