login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the minimum plus the upper median equal to the lower median plus the maximum in every 2X2 subblock
9

%I #5 Jan 16 2014 14:01:29

%S 40,112,112,352,232,352,1216,568,568,1216,4480,1624,1096,1624,4480,

%T 17152,5272,2536,2536,5272,17152,67072,18712,6952,4744,6952,18712,

%U 67072,265216,70168,21928,10696,10696,21928,70168,265216,1054720,271384,76456,28744

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the minimum plus the upper median equal to the lower median plus the maximum in every 2X2 subblock

%C Table starts

%C ......40.....112.....352....1216....4480...17152...67072..265216..1054720

%C .....112.....232.....568....1624....5272...18712...70168..271384..1067032

%C .....352.....568....1096....2536....6952...21928...76456..283816..1091752

%C ....1216....1624....2536....4744...10696...28744...89416..309064..1141576

%C ....4480....5272....6952...10696...19720...43912..116872..361096..1242760

%C ...17152...18712...21928...28744...43912...80392..177928..471304..1451272

%C ...67072...70168...76456...89416..116872..177928..324616..716296..1892872

%C ..265216..271384..283816..309064..361096..471304..716296.1304584..2874376

%C .1054720.1067032.1091752.1141576.1242760.1451272.1892872.2874376..5230600

%C .4206592.4231192.4280488.4379464.4578952.4984072.5818888.7586824.11515912

%H R. H. Hardin, <a href="/A235893/b235893.txt">Table of n, a(n) for n = 1..309</a>

%F Empirical for diagonal and column k (the k=2..7 recurrence also works for k=1; apparently all rows and columns satisfy the same order 3 recurrence):

%F diagonal: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)

%F k=1: a(n) = 6*a(n-1) -8*a(n-2)

%F k=2..7..(?): a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)

%e Some solutions for n=4 k=4

%e ..1..3..1..3..1....1..1..1..2..2....1..3..1..3..1....0..3..0..2..3

%e ..1..3..1..3..1....1..1..1..2..2....3..1..3..1..3....0..3..0..2..3

%e ..1..3..1..3..1....1..1..1..2..2....1..3..1..3..1....0..3..0..2..3

%e ..1..3..1..3..1....1..1..1..2..2....1..3..1..3..1....0..3..0..2..3

%e ..1..3..1..3..1....2..2..2..1..1....3..1..3..1..3....0..3..0..2..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 16 2014