login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Union of 2 and powers of odd primes.
2

%I #31 Jul 19 2024 08:41:49

%S 1,2,3,5,7,9,11,13,17,19,23,25,27,29,31,37,41,43,47,49,53,59,61,67,71,

%T 73,79,81,83,89,97,101,103,107,109,113,121,125,127,131,137,139,149,

%U 151,157,163,167,169,173,179,181,191,193,197,199,211,223,227,229

%N Union of 2 and powers of odd primes.

%C Numbers n such that the group G_n:={x+yi: x^2+y^2==1 (mod n); 0<=x,y<n} is cyclic; i.e., numbers n such that A060968(n) = A235863(n).

%H Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, <a href="http://arxiv.org/abs/1401.4708">Fermat test with Gaussian base and Gaussian pseudoprimes</a>, arXiv:1401.4708 [math.NT], 2014.

%F {2} UNION A061345. - _R. J. Mathar_, Jul 19 2024

%t Select[ Range[230], # == 2 || Mod[#, 2] == 1 && PrimeNu[#] < 2 &] (* and modified by _Robert G. Wilson v_, Dec 29 2016 *)

%Y Cf. A060968, A061345, A235863.

%K nonn

%O 1,2

%A _José María Grau Ribas_, Feb 23 2014