login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the difference of the upper median and minimum value of each 2X2 subblock in lexicographically nondecreasing order columnwise and nonincreasing rowwise
9

%I #4 Jan 16 2014 07:54:21

%S 81,549,549,3459,8160,3459,20537,112146,110923,20537,118383,1403872,

%T 3294824,1378463,118383,668041,16791083,87473420,87276535,16385455,

%U 668041,3720671,193298612,2193348247,4948377018,2183863895,187651928

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the difference of the upper median and minimum value of each 2X2 subblock in lexicographically nondecreasing order columnwise and nonincreasing rowwise

%C Table starts

%C ........81..........549...........3459...........20537...........118383

%C .......549.........8160.........112146.........1403872.........16791083

%C ......3459.......110923........3294824........87473420.......2193348247

%C .....20537......1378463.......87276535......4948377018.....265469754317

%C ....118383.....16385455.....2183863895....264596677243...30753132992706

%C ....668041....187651928....51823058334..13346776888685.3381137131414373

%C ...3720671...2100282123..1185755777410.644799592944959

%C ..20536617..23113626964.26334832022372

%C .112678583.251566008413

%C .615713801

%H R. H. Hardin, <a href="/A235833/b235833.txt">Table of n, a(n) for n = 1..60</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 14]

%F k=2: [order 84]

%F Empirical for row n:

%F n=1: [linear recurrence of order 14]

%F n=2: [order 84]

%e Some solutions for n=2 k=4

%e ..2..0..0..0..0....2..0..0..2..1....2..0..0..1..0....0..0..0..0..0

%e ..1..1..1..1..1....1..1..1..0..1....1..1..1..2..1....1..1..2..1..1

%e ..2..0..0..1..0....1..1..1..0..1....1..0..1..2..2....2..0..0..0..2

%Y Column 1 and row 1 are A235584

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 16 2014