Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jan 16 2014 06:20:13
%S 256,2648,2648,26852,84300,26852,231182,2904651,2904651,231182,
%T 1922672,78133908,401195649,78133908,1922672,14817810,2024258650,
%U 40931219364,40931219364,2024258650,14817810,110573053,45232185179,4011288173007
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the sum of each 2X2 subblock two median terms lexicographically nondecreasing rowwise and columnwise
%C Table starts
%C .......256.........2648...........26852...........231182..........1922672
%C ......2648........84300.........2904651.........78133908.......2024258650
%C .....26852......2904651.......401195649......40931219364....4011288173007
%C ....231182.....78133908.....40931219364...16476607620547.6446221312475127
%C ...1922672...2024258650...4011288173007.6446221312475127
%C ..14817810..45232185179.319846755566490
%C .110573053.960244682353
%C .791130664
%H R. H. Hardin, <a href="/A235815/b235815.txt">Table of n, a(n) for n = 1..40</a>
%e Some solutions for n=2 k=4
%e ..0..0..0..3..0....0..0..1..3..3....0..0..0..1..2....0..0..3..0..3
%e ..0..0..0..0..1....0..0..2..0..2....0..0..0..1..1....0..0..1..1..3
%e ..0..1..0..2..2....0..0..3..1..0....0..0..0..1..3....0..0..1..3..1
%Y Column 1 is A235749
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 16 2014