OFFSET
1,1
LINKS
Peter J. C. Moses, Table of n, a(n) for n = 1..5000
EXAMPLE
Four consecutive Kimberling primes(A022885), beginning with 5 are 5,7,11,13. Since 5+13 = 7+11, then 5 is in the sequence; four consecutive Kimberling primes, beginning with 7 are 7,11,13,23. Since 7+23 is not equal to 11+13, then 7 is not in the sequence.
MATHEMATICA
Nest[Map[#[[1]]&, Select[Partition[#, 4, 1], #[[1]]+#[[4]]==#[[2]]+#[[3]]&]]&, Prime[Range[5000]], 2]
PROG
(PARI) isA022885(p) = {my(k = primepi(p)); (p == prime(k)) && ((prime(k) + prime(k+3)) == (prime(k+1) + prime(k+2))); }
lista(nn) = {prm = primes(nn); vkp = select(p->isA022885(p), prm); for(n=1, #vkp-3, if ((vkp[n] + vkp[n+3]) == (vkp[n+1] + vkp[n+2]), print1(vkp[n], ", ")); ); } \\ Michel Marcus, Jan 15 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jan 15 2014
EXTENSIONS
a(5)-a(37) from Giovanni Resta, Jan 15 2014
STATUS
approved