Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Apr 18 2017 16:18:19
%S 1034289,1046529,1048576,1054729,1056784,1073296,1075369,1085764,
%T 1238769,1247689,1354896,1380625,1382976,1432809,1507984,1605289,
%U 1607824,1630729,1695204,1708249,1750329,1763584,1803649,1827904,1836025,1890625,1946025,1974025
%N Squares which have one or more occurrences of exactly seven different digits.
%C The first term having a repeated digit is 10137856.
%H Colin Barker, <a href="/A235722/b235722.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = A054035(n)^2.
%e 1247689 is in the sequence because 1247689 = 1117^2 and 1247689 contains exactly seven different digits: 1, 2, 4, 6, 7, 8 and 9.
%t sddQ[n_]:=Count[DigitCount[n],_?(#>0&)]==7; Select[Range[1001,1450]^2, sddQ] (* _Harvey P. Dale_, Mar 12 2015 *)
%o (PARI) s=[]; for(n=1, 10000, if(#vecsort(eval(Vec(Str(n^2))),,8)==7, s=concat(s, n^2))); s
%Y Cf. A235717-A235721, A235723, A235724, A225218.
%K nonn,base
%O 1,1
%A _Colin Barker_, Jan 15 2014