login
a(n) is the smallest number k such that n*k is a partition number.
1

%I #14 Jan 16 2014 04:48:40

%S 1,1,1,14,1,5,1,7,15,3,1,66,286,3,1,11,22715,44,33,35761,2,1,363,33,

%T 63,143,5,2,84,1,2425,72610,7,2725580,11,22,926026,3283,123981330,

%U 58088,363,1,70,4,3,176484,11209,85166,10,141790,11209835405

%N a(n) is the smallest number k such that n*k is a partition number.

%C a(n) = 1 iff n is a partition number.

%F a(n) = A072871(n)/n.

%e For n = 4, a(4) = 14 because if 1<=k<=13 we have that 4*k is not a partition number, but if k = 14 then 4*14 = 56 and 56 is the number of partitions of 11.

%t a[n_] := PartitionsP[NestWhile[(# + 1)&, 1, Mod[PartitionsP@ #, n] > 0 &]]/n; Array[a,51] (* _Giovanni Resta_, Jan 15 2014 *)

%Y Cf. A000041, A046641, A072871, A213179, A213365, A216258, A217725, A217726, A222175, A222178, A222179, A225317, A225361.

%K nonn

%O 1,4

%A _Omar E. Pol_, Jan 14 2014