login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with 2X2 subblock sum of squares lexicographically nondecreasing rowwise and columnwise
3

%I #4 Jan 13 2014 06:32:05

%S 256,2272,2272,20164,75176,20164,131208,2723053,2723053,131208,853776,

%T 63898897,444495768,63898897,853776,4548852,1494414258,43576923092,

%U 43576923092,1494414258,4548852,24235929,26134209539,4228043972530

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with 2X2 subblock sum of squares lexicographically nondecreasing rowwise and columnwise

%C Table starts

%C .....256........2272...........20164..............131208...............853776

%C ....2272.......75176.........2723053............63898897...........1494414258

%C ...20164.....2723053.......444495768.........43576923092........4228043972530

%C ..131208....63898897.....43576923092......17753163039244.....7139791037097420

%C ..853776..1494414258...4228043972530....7139791037097420.11877890687003939863

%C .4548852.26134209539.294719604196153.2038446270198046968

%H R. H. Hardin, <a href="/A235652/b235652.txt">Table of n, a(n) for n = 1..49</a>

%e Some solutions for n=2 k=4

%e ..0..0..0..0..3....0..0..3..0..3....0..0..3..0..1....0..0..0..0..0

%e ..3..0..3..0..2....0..0..1..0..2....0..0..1..0..3....1..0..2..0..3

%e ..3..1..3..2..1....3..1..2..1..0....2..0..3..2..1....0..1..1..1..0

%Y Column 1 is A235518

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 13 2014