login
A235401
a(1) = 2 and a(n+1) = smallest k > a(n) such that for every 1<=j<=n the value k mod a(j) is not in the sequence.
1
2, 3, 4, 9, 16, 24, 37, 45, 60, 72, 108, 133, 141, 216, 252, 433, 501, 529, 648, 673, 792, 861, 1069, 1105, 1153, 1249, 1296, 1573, 1581, 2005, 2412, 2689, 2881, 2952, 3553, 3949, 4129, 4273, 4317, 4609, 4705, 5328, 5397, 5605, 5901, 6300, 6325, 6480, 7056, 7201
OFFSET
1,1
COMMENTS
Note that setting a(1) = 1, instead of a(1) = 2, we obtain the sequence 1, 2, 4, 8,..., i.e., the powers of 2. - Giovanni Resta, Apr 07 2014
LINKS
MATHEMATICA
s = {2}; While[(n = Length@s) < 50, z = 1 + Last@s; While[ Catch[ Do[ If[Mod[z - s[[i]], s[[j]]] == 0, Throw@True], {j, 2, n}, {i, j-1}]; False], z++]; AppendTo[s, z]]; s (* Giovanni Resta, Jan 10 2014 *)
CROSSREFS
Sequence in context: A192818 A119721 A098969 * A354268 A281882 A325436
KEYWORD
nonn
AUTHOR
Paul Olaves Foss, Jan 09 2014
EXTENSIONS
a(36)-a(50) from Giovanni Resta, Jan 10 2014
STATUS
approved