Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Apr 11 2024 17:21:19
%S -2,1,-7,23,-121,719,-5041,40319,-362881,3628799,-39916801,479001599,
%T -6227020801,87178291199,-1307674368001,20922789887999,
%U -355687428096001,6402373705727999,-121645100408832001,2432902008176639999,-51090942171709440001,1124000727777607679999
%N a(n) = (-1)^n*(n! - (-1)^n).
%C This sequence links rencontres numbers r(n) with Sum_{k>=1} 1/((k+n)*k!) = (a(n) + (-1)^(n+1)*e*r(n))/n.
%H G. C. Greubel, <a href="/A235378/b235378.txt">Table of n, a(n) for n = 1..448</a> (terms 1..40 from Jean-François Alcover)
%H Fred Kline, <a href="http://mathoverflow.net/questions/126739">Question asked on MathOverflow: Sum_{k=0..infinity} 1/((k+2)*k!)</a>
%F Recurrence: a(1)=-2, a(2)=1; for n>2, a(n) = -n*a(n-1) - n - 1.
%F E.g.f.: 1/(1+x) - exp(x).
%F D-finite with recurrence: a(n) +(n-2)*a(n-1) +(-2*n+3)*a(n-2) +(n-2)*a(n-3)=0. - _R. J. Mathar_, Feb 24 2020
%F a(1) = -2; For a > 1: a(n) = (-1)^n*Sum_{j=0..n-1} (abs(Stirling1(n,j) + binomial(n - 1, j))). - _Detlef Meya_, Apr 11 2024
%t r[n_] := n*Subfactorial[n-1]; a[n_] := n*Sum[1/((k + n)*k!), {k, 1, Infinity}] + (-1)^n*E*r[n]; Table[a[n], {n, 1, 25}]
%t (* or, simply: *) Table[(-1)^n*(n!-(-1)^n), {n, 1, 25}]
%t a[1]:=-2;a[n]:=(-1)^n*Sum[Abs[StirlingS1[n,j]+Binomial[n-1,j]],{j,0,n-1}];Flatten[Table[a[n],{n,1,19}]] (* _Detlef Meya_, Apr 11 2024 *)
%o (PARI) for(n=1, 30, print1((-1)^n*(n!-(-1)^n), ", ")) \\ _G. C. Greubel_, Nov 21 2017
%o (Magma) [(-1)^n*(Factorial(n) - (-1)^n): n in [1..30]]; // _G. C. Greubel_, Nov 21 2017
%Y Cf. A000240.
%K sign,easy
%O 1,1
%A _Jean-François Alcover_, Jan 08 2014