Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Sep 08 2022 08:46:06
%S 5,7,41,61,5,547,17,7,5,67,41,398581,5,7,21523361,103,5,2851,41,7,5,
%T 23535794707,17,61,5,7,41,523,5,6883,926510094425921,7,5,61,41,18427,
%U 5,7,17,33703,5,82064241848634269407,41,7,5,16921,76801,547,5,7,41,78719947,5,61,17,7,5,3187,41
%N Smallest odd prime factor of 3^n + 1, for n > 1.
%C Levi Ben Gerson (1288-1344) proved that 3^n + 1 = 2^m has no solution in integers if n > 1, by showing that 3^n + l has an odd prime factor. His proof uses remainders after division of powers of 3 by 8 and powers of 2 by 8; see the Lenstra and Peterson links. For an elegant short proof, see the Franklin link.
%D L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, NY 1992; see p. 731.
%H <a href="/A235365/b235365.txt">Table of n, a(n) for n = 2..768</a>
%H Philip Franklin, <a href="http://www.jstor.org/stable/2298495">Problem 2927</a>, Amer. Math. Monthly, 30 (1923), p. 81.
%H Aaron Herschfeld, <a href="http://dx.doi.org/10.1090/S0002-9904-1936-06275-0">The equation 2^x - 3^y = d</a>, Bull. Amer. Math. Soc., 42 (1936), 231-234.
%H Hendrik Lenstra <a href="http://www.msri.org/publications/ln/msri/1998/mandm/lenstra/1/index.html">Harmonic Numbers</a>, MSRI, 1998.
%H J. J. O'Connor and E. F. Robertson, <a href="http://www-history.mcs.st-and.ac.uk/Biographies/Levi.html">Levi ben Gerson</a>, The MacTutor History of Mathematics archive, 2009.
%H Ivars Peterson, <a href="http://archive.is/iRXz">Medieval Harmony</a>, Math Trek, MAA, 2012.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Gersonides">Gersonides</a>
%F a(2+4n) = 5 as 3^(2+4n) + 1 = (3^2)*(3^4)^n + 1 = 9*81^n + 1 = 9*(80+1)^n + 1 == 9 + 1 == 0 (mod 5).
%F a(3+6n) = 7 as 3^(3+6n) + 1 = (3^3)*(3^6)^n + 1 = 27*729^n + 1 = 27*(728+1)^n + 1 == 27 + 1 == 0 (mod 7), but 27 * 729^n + 1 == 2*(-1)^n + 1 !== 0 (mod 5).
%e 3^2 + 1 = 10 = 2*5, so a(2) = 5.
%t Table[FactorInteger[3^n + 1][[2, 1]], {n, 2, 50}]
%o (Magma) [PrimeDivisors(3^n +1)[2]: n in [2..60] ] ; // _Vincenzo Librandi_, Mar 16 2019
%Y See A235366 for 3^n - 1.
%Y Cf. also A003586 (products 2^m * 3^n), A006899, A061987, A108906.
%K nonn
%O 2,1
%A _Jonathan Sondow_, Jan 19 2014
%E Terms to a(132) in b-file from _Vincenzo Librandi_, Mar 16 2019
%E a(133)-a(658) in b-file from _Amiram Eldar_, Feb 05 2020
%E a(659)-a(768) in b-file from _Max Alekseyev_, Apr 27 2022