Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 13 2024 19:11:00
%S 6,23,49,84,128,181,243,314,394,483,581,688,804,929,1063,1206,1358,
%T 1519,1689,1868,2056,2253,2459,2674,2898,3131,3373,3624,3884,4153,
%U 4431,4718,5014,5319,5633,5956,6288,6629,6979,7338,7706,8083,8469,8864,9268,9681,10103
%N a(n) = n*(9*n + 25)/2 + 6.
%C This is the case d=6 of n*(9*n + 4*d + 1)/2 + d. Other similar sequences are:
%C d=0, A022267;
%C d=1, A064225;
%C d=2, A062123;
%C d=3, A064226;
%C d=4, A022266 (with initial 0);
%C d=5, A178977.
%C First bisection of A235537.
%H Bruno Berselli, <a href="/A235332/b235332.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: (6 + 5*x - 2*x^2)/(1 - x)^3.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F 2*a(n) - a(n+1) + 12 = A081267(n).
%F E.g.f.: exp(x)*(12 + 34*x + 9*x^2)/2. - _Elmo R. Oliveira_, Nov 13 2024
%t Table[n (9 n + 25)/2 + 6, {n, 0, 50}]
%t LinearRecurrence[{3,-3,1},{6,23,49},50] (* _Harvey P. Dale_, Feb 12 2022 *)
%o (Magma) [n*(9*n+25)/2+6: n in [0..50]];
%o (PARI) a(n)=n*(9*n+25)/2+6 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Cf. A017257 (first differences), A022266, A022267, A062123, A064225, A064226, A081267, A178977, A235537.
%K nonn,easy
%O 0,1
%A _Bruno Berselli_, Jan 22 2014