login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235329
E.g.f. satisfies: A'(x) = A(x)^3 / A(-x) with A(0) = 1.
3
1, 1, 4, 22, 184, 1888, 24352, 364336, 6372352, 125098624, 2765195776, 67161837568, 1795080211456, 51946830487552, 1628857441189888, 54705106541123584, 1968709261466042368, 75262309701303402496, 3057220808668673081344, 131069643224297960046592
OFFSET
0,3
FORMULA
E.g.f.: 1/(1 - 3*Series_Reversion( Integral 1/(1-9*x^2)^(1/3) dx ))^(1/3).
Limit n->infinity (a(n)/n!)^(1/n) = Pi*2^(5/3)/(sqrt(3)*GAMMA(2/3)^3) = 2.3191905339278567... - Vaclav Kotesovec, Jan 28 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 22*x^3/3! + 184*x^4/4! + 1888*x^5/5! +...
Related series.
A(x)^3 = 1 + 3*x + 18*x^2/2! + 144*x^3/3! + 1512*x^4/4! + 19224*x^5/5! +...
Note that 1 - 1/A(x)^3 is an odd function:
1 - 1/A(x)^3 = 3*x - 18*x^3/3! - 216*x^5/5! - 18144*x^7/7! - 3483648*x^9/9! +...
where Series_Reversion((1 - 1/A(x)^3)/3) = Integral 1/(1-9*x^2)^(1/3) dx.
MATHEMATICA
CoefficientList[1/(1 - 3*InverseSeries[Series[Integrate[1/(1-9*x^2)^(1/3), x], {x, 0, 20}], x])^(1/3), x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2014 *)
PROG
(PARI) /* By definition A'(x) = A(x)^3 / A(-x): */
{a(n)=local(A=1); for(i=0, n, A=1+intformal(A^3/subst(A, x, -x) +x*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* E.g.f. 1/(1 - 3*Series_Reversion(Integral (1-9*x)^(1/3) dx))^(1/3): */
{a(n)=local(A=1); A=1/(1-3*serreverse(intformal(1/(1-9*x^2 +x*O(x^n))^(1/3))))^(1/3); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A004115 A362747 A222885 * A220231 A112370 A197961
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2014
STATUS
approved