login
Number of (n+1) X (4+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 6 (constant-stress 1 X 1 tilings).
1

%I #9 Jun 20 2022 21:29:05

%S 1554,2918,5042,10790,21090,49574,107186,269222,629154,1656998,

%T 4101362,11181350,28857570,80708774,214757426,612173222,1666192674,

%U 4817289638,13336967282,38965654310,109297879650,321784561574,911836050866

%N Number of (n+1) X (4+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 6 (constant-stress 1 X 1 tilings).

%H R. H. Hardin, <a href="/A235306/b235306.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +25*a(n-2) -112*a(n-3) -231*a(n-4) +1260*a(n-5) +875*a(n-6) -7280*a(n-7) -224*a(n-8) +22736*a(n-9) -7980*a(n-10) -36288*a(n-11) +21456*a(n-12) +23040*a(n-13) -17280*a(n-14).

%e Some solutions for n=5:

%e 5 2 5 2 5 2 5 1 5 0 4 0 4 1 4 1 4 1 4 0

%e 0 3 0 3 0 5 2 4 2 3 1 3 1 4 1 3 0 3 0 2

%e 3 0 3 0 3 2 5 1 5 0 4 0 4 1 4 1 4 1 4 0

%e 1 4 1 4 1 3 0 2 0 1 0 2 0 3 0 4 1 4 1 3

%e 4 1 4 1 4 2 5 1 5 0 4 0 4 1 4 2 5 2 5 1

%e 0 3 0 3 0 3 0 2 0 1 0 2 0 3 0 4 1 4 1 3

%Y Column 4 of A235310.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 05 2014