login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235283
Number of (n+1) X (2+1) 0..3 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4 (constant-stress 1 X 1 tilings).
1
40, 68, 104, 188, 304, 572, 968, 1868, 3280, 6428, 11624, 22988, 42544, 84572, 159368, 317708, 607120, 1212188, 2341544, 4678988, 9113584, 18218972, 35712968, 71409548, 140660560, 281288348, 556133864, 1112202188, 2205141424, 4410151772
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 3*a(n-2) - 15*a(n-3) + 4*a(n-4) + 18*a(n-5) - 12*a(n-6).
Empirical g.f.: 4*x*(10 - 13*x - 55*x^2 + 68*x^3 + 72*x^4 - 84*x^5) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)*(1 - 3*x^2)). - Colin Barker, Oct 18 2018
EXAMPLE
Some solutions for n=4:
0 1 0 3 2 3 0 1 0 1 3 2 0 1 0 0 2 0 0 3 0
3 0 3 0 3 0 3 0 3 2 0 3 3 0 3 3 1 3 2 1 2
2 3 2 3 2 3 1 2 1 0 2 1 0 1 0 0 2 0 0 3 0
3 0 3 0 3 0 3 0 3 2 0 3 3 0 3 3 1 3 1 0 1
2 3 2 2 1 2 0 1 0 0 2 1 1 2 1 0 2 0 0 3 0
CROSSREFS
Column 2 of A235289.
Sequence in context: A232870 A338373 A355778 * A134216 A043156 A039333
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 05 2014
STATUS
approved