login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A235274
Number of (n+1) X (4+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5 (constant-stress 1 X 1 tilings).
1
520, 844, 1280, 2344, 3952, 7936, 14672, 31504, 62800, 141424, 298640, 695344, 1530832, 3647536, 8265872, 20008624, 46236880, 113126704, 264832400, 652640944, 1540956112, 3815788336, 9060105872, 22507117744, 53636823760, 133528827184
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 15*a(n-2) - 15*a(n-3) - 80*a(n-4) + 80*a(n-5) + 180*a(n-6) - 180*a(n-7) - 144*a(n-8) + 144*a(n-9).
Empirical g.f.: 4*x*(130 + 81*x - 1841*x^2 - 949*x^3 + 9167*x^4 + 3486*x^5 - 19026*x^6 - 4032*x^7 + 13824*x^8) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)). - Colin Barker, Oct 18 2018
EXAMPLE
Some solutions for n=4:
0 4 0 4 0 2 4 3 4 3 2 0 1 0 4 2 4 0 4 2
3 2 3 2 3 3 0 4 0 4 1 4 0 4 3 3 0 1 0 3
0 4 0 4 0 1 3 2 3 2 2 0 1 0 4 2 4 0 4 2
3 2 3 2 3 3 0 4 0 4 1 4 0 4 3 4 1 2 1 4
0 4 0 4 0 2 4 3 4 3 2 0 1 0 4 2 4 0 4 2
CROSSREFS
Column 4 of A235280.
Sequence in context: A043626 A345596 A345855 * A147854 A147856 A094903
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 05 2014
STATUS
approved