login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the number of (n+1) X (k+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
8

%I #7 Jun 19 2022 00:09:30

%S 240,1172,1172,5696,4616,5696,27812,18444,18444,27812,135520,76112,

%T 61160,76112,135520,662892,319156,215996,215996,319156,662892,3236288,

%U 1374400,781040,672256,781040,1374400,3236288,15860868,5998924,2971196,2154516

%N T(n,k) is the number of (n+1) X (k+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).

%C Table starts

%C 240 1172 5696 27812 135520 662892 3236288

%C 1172 4616 18444 76112 319156 1374400 5998924

%C 5696 18444 61160 215996 781040 2971196 11553392

%C 27812 76112 215996 672256 2154516 7402144 26061700

%C 135520 319156 781040 2154516 6122960 19043548 60655008

%C 662892 1374400 2971196 7402144 19043548 54586424 160144012

%C 3236288 5998924 11553392 26061700 60655008 160144012 432038320

%C 15860868 26765648 46833260 96901472 207093844 509661968 1282142052

%C 77573344 120643572 193465560 368028508 721977376 1652364332 3864421920

%C 380902284 553515168 826218532 1459917480 2659371660 5703493096 12517909388

%H R. H. Hardin, <a href="/A235212/b235212.txt">Table of n, a(n) for n = 1..142</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) +35*a(n-2) -81*a(n-3) -264*a(n-4) +144*a(n-5) +384*a(n-6).

%F k=2: [order 29].

%F k=3: [order 62].

%e Some solutions for n=3, k=4:

%e 2 6 2 0 1 0 4 7 4 7 2 1 3 5 1 0 3 6 4 0

%e 3 2 3 6 2 3 2 0 2 0 6 0 7 4 5 4 2 0 3 4

%e 2 6 2 0 1 0 4 7 4 7 3 2 4 6 2 0 3 6 4 0

%e 1 0 1 4 0 6 5 3 5 3 2 6 3 0 1 6 4 2 5 6

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 04 2014