login
A235198
T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
9
136, 512, 512, 1880, 1544, 1880, 7072, 4724, 4724, 7072, 26040, 15604, 12176, 15604, 26040, 98080, 51144, 35868, 35868, 51144, 98080, 361688, 176104, 105208, 96848, 105208, 176104, 361688, 1364512, 597712, 333340, 261760, 261760, 333340, 597712
OFFSET
1,1
COMMENTS
Table starts
136 512 1880 7072 26040 98080 361688 1364512
512 1544 4724 15604 51144 176104 597712 2109748
1880 4724 12176 35868 105208 333340 1043256 3446068
7072 15604 35868 96848 261760 774140 2263256 7020392
26040 51144 105208 261760 652872 1816160 4984584 14642048
98080 176104 333340 774140 1816160 4812096 12604104 35505020
361688 597712 1043256 2263256 4984584 12604104 31498952 85424552
1364512 2109748 3446068 7020392 14642048 35505020 85424552 224694240
5038200 7324940 11230320 21497244 42396520 98577596 227963432 582078148
19038496 26321996 38241780 68985912 129109408 287939516 642257224 1596252448
LINKS
FORMULA
Empirical for column k (the k=3..6 recurrence works also for k=1..2; apparently all rows and columns satisfy the same order 39 recurrence):
k=1: a(n) = 30*a(n-2) -257*a(n-4) +468*a(n-6).
k=2: [order 23].
k=3..6: [same order 39 recurrence].
EXAMPLE
Some solutions for n=4, k=4:
1 4 2 5 1 2 6 3 4 3 3 6 4 6 3 1 4 1 5 2
2 0 3 1 2 3 2 4 0 4 5 3 6 3 5 5 3 5 4 6
1 4 2 5 1 1 5 2 3 2 1 4 2 4 1 2 5 2 6 3
3 1 4 2 3 4 3 5 1 5 3 1 4 1 3 3 1 3 2 4
0 3 1 4 0 1 5 2 3 2 1 4 2 4 1 0 3 0 4 1
CROSSREFS
Sequence in context: A183635 A116223 A124241 * A235191 A076331 A183901
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 04 2014
STATUS
approved