|
|
A235182
|
|
Number of (n+1)X(4+1) 0..5 arrays with every 2X2 subblock having its diagonal sum differing from its antidiagonal sum by 5, with no adjacent elements equal (constant stress tilted 1X1 tilings)
|
|
1
|
|
|
1696, 3796, 8224, 19584, 45128, 112432, 270056, 694680, 1719360, 4527576, 11467512, 30743168, 79346904, 215790584, 565988848, 1557731960, 4144240488, 11523618144, 31052234856, 87128705240, 237510624832, 671813438520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 4 of A235186
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 4*a(n-1) +41*a(n-2) -177*a(n-3) -709*a(n-4) +3405*a(n-5) +6658*a(n-6) -37423*a(n-7) -35857*a(n-8) +259792*a(n-9) +100713*a(n-10) -1189883*a(n-11) -44519*a(n-12) +3652705*a(n-13) -650588*a(n-14) -7506845*a(n-15) +2237158*a(n-16) +10206566*a(n-17) -3478912*a(n-18) -9024208*a(n-19) +2879248*a(n-20) +5075680*a(n-21) -1279200*a(n-22) -1728912*a(n-23) +283680*a(n-24) +319968*a(n-25) -24192*a(n-26) -24192*a(n-27)
|
|
EXAMPLE
|
Some solutions for n=4
..2..4..3..5..1....2..4..2..5..1....4..1..4..1..3....3..2..3..2..4
..4..1..5..2..3....3..0..3..1..2....1..3..1..3..0....0..4..0..4..1
..2..4..3..5..1....2..4..2..5..1....5..2..5..2..4....3..2..3..2..4
..3..0..4..1..2....3..0..3..1..2....3..5..3..5..2....0..4..0..4..1
..2..4..3..5..1....1..3..1..4..0....5..2..5..2..4....3..2..3..2..4
|
|
CROSSREFS
|
Sequence in context: A325884 A224605 A252570 * A237170 A301985 A237845
Adjacent sequences: A235179 A235180 A235181 * A235183 A235184 A235185
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Jan 04 2014
|
|
STATUS
|
approved
|
|
|
|