Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jun 20 2022 20:42:48
%S 268,1528,1528,8688,8380,8688,49464,45776,45776,49464,281580,250708,
%T 240020,250708,281580,1603344,1373616,1264228,1264228,1373616,1603344,
%U 9129276,7533616,6664620,6419300,6664620,7533616,9129276,51991032
%N T(n,k) is the number of (n+1) X (k+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
%C Table starts
%C 268 1528 8688 49464 281580 1603344
%C 1528 8380 45776 250708 1373616 7533616
%C 8688 45776 240020 1264228 6664620 35209872
%C 49464 250708 1264228 6419300 32642908 166600788
%C 281580 1373616 6664620 32642908 160169432 790073988
%C 1603344 7533616 35209872 166600788 790073988 3773616876
%C 9129276 41341624 186233144 851849276 3906036120 18074063004
%C 51991032 227070556 986928332 4369637236 19401099892
%C 296077680 1247903536 5236116224 22453582476
%C 1686409896 6864076036 27831579620
%H R. H. Hardin, <a href="/A235175/b235175.txt">Table of n, a(n) for n = 1..84</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 9].
%F k=2: [order 46].
%e Some solutions for n=2, k=4:
%e 6 7 6 5 7 6 5 2 5 7 2 7 5 6 7 0 3 6 4 2
%e 5 2 5 0 6 3 6 7 6 4 0 1 3 0 5 5 4 3 5 7
%e 4 5 4 3 5 2 1 6 1 3 2 7 5 6 7 4 7 2 0 6
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 04 2014