Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Sep 26 2021 08:11:46
%S 9,26,75,217,629,1826,5307,15438,44941,130900,381444,1111926,3242224,
%T 9455987,27583372,80472698,234799873,685149328,1999414181,5835044495,
%U 17029601028,49702671494,145066398937,423412132499,1235854038791,3607255734629,10529101874491
%N Number of positive integers with n digits in which adjacent digits differ by at most 1.
%H Alois P. Heinz, <a href="/A235163/b235163.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (6,-10,1,6,-1).
%F a(n) = Sum_{r=0..9} u(n,r) where u(n,r) = 0 if r<0 or r>9, u(1,0) = 0, u(1,r) = 1 for 1<=r<=9, and otherwise u(n,r) = u(n-1,r-1) + u(n-1,r) + u(n-1,r+1).
%F G.f.: -x*(3*x^4-18*x^3-9*x^2+28*x-9)/(x^5-6*x^4-x^3+10*x^2-6*x+1). - _Alois P. Heinz_, Jan 12 2014
%e a(2) = 26: 10, 11, 12, 21, 22, 23, 32, 33, 34, 43, 44, 45, 54, 55, 56, 65, 66, 67, 76, 77, 78, 87, 88, 89, 98, 99.
%p u:= proc(n, r) option remember; `if`(n=1, `if`(r=0, 0, 1),
%p add(`if`(r+i in [$0..9], u(n-1, r+i), 0), i=-1..1))
%p end:
%p a:= n-> add(u(n, r), r = 0..9):
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jan 12 2014
%t CoefficientList[Series[-x*(3*x^4-18*x^3-9*x^2+28*x-9)/(x^5-6*x^4-x^3+10*x^2-6*x+1),{x,0,30}],x]//Rest (* _Harvey P. Dale_, Aug 13 2019 *)
%o (Python)
%o from functools import cache
%o @cache
%o def u(n, r):
%o if r < 0 or r > 9: return 0
%o if n == 1: return (r > 0)
%o return u(n-1, r-1) + u(n-1, r) + u(n-1, r+1)
%o def a(n): return sum(u(n, r) for r in range(10))
%o print([a(n) for n in range(1, 28)]) # _Michael S. Branicky_, Sep 26 2021
%Y Cf. A032981, A090994, A126364 (allowing leading zeros).
%K nonn,base,easy
%O 1,1
%A _Gerry Leversha_, Jan 04 2014