Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jan 19 2018 03:10:50
%S 1,2,3,5,7,9,12,16,15,18,20,24,28,32,25,27,30,35,36,40,42,48,49,56,64,
%T 45,50,54,55,60,63,65,70,72,77,78,80,84,88,91,96,98,104,112,119,128,
%U 133,152,75,81,90,99,100,105,108,110,117,120,121,126,130,132
%N Irregular triangle read by rows: row n (n>=1) contains in increasing order the M-indices of the trees with n vertices.
%C We define the M-index of a tree T to be the smallest of the Matula numbers of the rooted trees isomorphic (as a tree) to T. Example. The path tree P[5] = ABCDE has M-index 9. Indeed, there are 3 rooted trees isomorphic to P[5]: rooted at A, B, and C, respectively. Their Matula numbers are 11, 10, and 9, respectively. Consequently, the M-index of P[5] is 9.
%C Number of entries in row n is A000055(n) (= number of trees with n vertices).
%C First entry in row n is A005517(n) (= smallest among the Matula numbers of the rooted trees with n vertices).
%C Last entry (= largest entry) in row n is A235112(n).
%H Emeric Deutsch, <a href="/A235111/b235111.txt">Rows n = 1..12, flattened</a>
%H E. Deutsch, <a href="http://arxiv.org/abs/1111.4288">Tree statistics from Matula numbers</a>, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
%H E. Deutsch, <a href="http://dx.doi.org/10.1016/j.dam.2012.05.012">Rooted tree statistics from Matula numbers</a>, Discrete Appl. Math., 160, 2012, 2314-2322.
%H F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, <a href="http://dx.doi.org/10.1021/ci990060s">The multiplicative version of the Wiener index</a>, J. Chem. Inf. Comput. Sci., 40, 2000, 113-116.
%H I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, <a href="http://dx.doi.org/10.1007/PL00010312">On the multiplicative Wiener index and its possible chemical applications</a>, Monatshefte f. Chemie, 131, 2000, 421-427.
%H I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%e Example. Row 4 is [5, 7]. Indeed, there are 2 trees with 4 vertices: the path P[4] and the star S[3] with 3 edges. There are two rooted trees isomorphic to P[4], having Matula numbers 5 and 6; smallest is 5. There are two rooted trees isomorphic to S[3], having Matula numbers 7 and 8; smallest is 7.
%e Triangle begins:
%e 1;
%e 2;
%e 3;
%e 5,7;
%e 9,12,16;
%e 15,18,20,24,28,32;
%p # The following program (due mainly to _W. Edwin Clark_), yields row n for the specified n (<=15).
%p n := 9;
%p with(numtheory): MIN := [1, 2, 3, 5, 9, 15, 25, 45, 75, 125, 225, 375, 625, 1125, 1875]: MAX := [1, 2, 4, 8, 19, 67, 331, 2221, 19577, 219613, 3042161, 50728129, 997525853, 22742734291, 592821132889]: f := proc (m) local x, p, S: S := NULL: x := factorset(m): for p in x do S := S, ithprime(m/p)*pi(p) end do: S end proc: M := proc (m) local A, B: A := {m}: do B := A: A := `union`(map(f, A), A): if B = A then return A end if end do end proc: V := proc (n) local u, v: u := proc (n) options operator, arrow: op(1, factorset(n)) end proc: v := proc (n) options operator, arrow: n/u(n) end proc: if n = 1 then 1 elif isprime(n) then 1+V(pi(n)) else V(u(n))+V(v(n))-1 end if end proc: Q := {}: for j from MIN[n] to MAX[n] do if V(j) = n then Q := `union`(Q, {min(M(j))}) else end if end do: Q;
%p # MIN is sequence A005517, MAX is sequence A005518.
%t nmax = 9 (* nmax > 3 *);
%t MIN = Join[{1, 2}, LinearRecurrence[{0, 0, 5}, {3, 5, 9}, nmax - 2]];
%t MAX = Join[{1, 2, 4}, NestList[Prime, 8, nmax - 4]];
%t row[n_] := (
%t f[m_] := Table[Prime[m/p]*PrimePi[p], {p, FactorInteger[m][[All, 1]]}];
%t M[m_] := Module[{A, B}, A = {m}; While[True, B = A; A = Union[Map[f, A] // Flatten, A]; If[B == A, Return[A]]]];
%t u [m_] := FactorInteger[m][[All, 1]][[1]];
%t v [m_] := m/u[m];
%t V [m_] := If [m==1, 1, If[PrimeQ[m], 1+V[PrimePi[m]], V[u[m]]+V[v[m]]-1]];
%t Q = {}; For[j = MIN[[n]], j <= MAX[[n]], j++, If[V[j] == n, Q = Union[Q, {Min[M[j]]}]]];
%t Q);
%t row[1] = {1};
%t Table[row[n], {n, 1, nmax}] // Flatten (* _Jean-François Alcover_, Jan 19 2018, adapted from Maple *)
%Y Cf. A000055, A005517, A005518, A235112.
%K nonn,tabf
%O 1,2
%A _Emeric Deutsch_, Jan 03 2014