login
Number of (n+1) X (6+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1

%I #7 Jun 19 2022 21:19:28

%S 26164,39884,63884,121768,238060,524728,1160340,2765568,6585764,

%T 16502816,41438468,108250824,284408956,773062784,2118218748,

%U 5982595008,17037956524,49833980552,146749793588,442059707872,1337246953540

%N Number of (n+1) X (6+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).

%H R. H. Hardin, <a href="/A235096/b235096.txt">Table of n, a(n) for n = 1..116</a>

%F Empirical: a(n) = 9*a(n-1) +6*a(n-2) -279*a(n-3) +514*a(n-4) +3213*a(n-5) -10656*a(n-6) -15267*a(n-7) +92760*a(n-8) +195*a(n-9) -435144*a(n-10) +318243*a(n-11) +1151658*a(n-12) -1467393*a(n-13) -1629840*a(n-14) +3140943*a(n-15) +944545*a(n-16) -3513288*a(n-17) +172122*a(n-18) +2004312*a(n-19) -330148*a(n-20) -568464*a(n-21) +76440*a(n-22) +65520*a(n-23).

%e Some solutions for n=4:

%e 4 2 5 2 3 2 5 3 4 1 4 3 4 2 1 3 0 3 0 3 0

%e 3 5 4 5 2 5 4 4 1 2 1 4 1 3 4 2 3 2 3 2 3

%e 4 2 5 2 3 2 5 3 4 1 4 3 4 2 3 5 2 5 2 5 2

%e 3 5 4 5 2 5 4 4 1 2 1 4 1 3 4 2 3 2 3 2 3

%e 2 0 3 0 1 0 3 2 3 0 3 2 3 1 2 4 1 4 1 4 1

%Y Column 6 of A235098.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 03 2014