|
|
A235091
|
|
Number of (n+1) X (1+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4, with no adjacent elements equal (constant stress tilted 1 X 1 tilings).
|
|
1
|
|
|
80, 256, 808, 2580, 8184, 26164, 83224, 266572, 849688, 2726852, 8707160, 27993324, 89526552, 288291140, 923287256, 2977443116, 9547498136, 30828553348, 98964094552, 319913934828, 1027967064600, 3326345126596, 10697524464088
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 3*a(n-1) + 13*a(n-2) - 39*a(n-3) - 26*a(n-4) + 78*a(n-5).
Empirical g.f.: 4*x*(20 + 4*x - 250*x^2 - 13*x^3 + 501*x^4) / ((1 - 3*x)*(1 - 13*x^2 + 26*x^4)). - Colin Barker, Oct 17 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..0..3....4..2....3..2....5..2....5..2....1..2....0..1....4..1....2..5....2..5
..1..0....2..4....5..0....3..4....3..4....4..1....5..2....3..4....4..3....5..4
..0..3....4..2....2..1....4..1....0..5....3..4....2..3....4..1....2..5....0..3
..1..0....2..4....5..0....1..2....2..3....0..5....0..5....1..2....4..3....2..1
..2..5....3..1....2..1....3..0....5..2....3..4....1..2....4..1....2..5....0..3
|
|
CROSSREFS
|
Column 1 of A235098.
Sequence in context: A203355 A203348 A235098 * A306434 A234890 A157912
Adjacent sequences: A235088 A235089 A235090 * A235092 A235093 A235094
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Jan 03 2014
|
|
STATUS
|
approved
|
|
|
|