login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235085 Number of (n+1)X(6+1) 0..4 arrays with every 2X2 subblock having its diagonal sum differing from its antidiagonal sum by 4, with no adjacent elements equal (constant stress tilted 1X1 tilings) 1
2554, 4514, 7810, 14702, 27218, 53590, 103702, 210318, 418838, 866298, 1758206, 3687018, 7583258, 16071562, 33396914, 71419678, 149733442, 322890902, 682659526, 1484242286, 3164667686, 6938097082, 14923990510, 32998428714 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 6 of A235087

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 6*a(n-1) +4*a(n-2) -87*a(n-3) +90*a(n-4) +450*a(n-5) -830*a(n-6) -936*a(n-7) +2737*a(n-8) +408*a(n-9) -4078*a(n-10) +891*a(n-11) +2766*a(n-12) -816*a(n-13) -904*a(n-14) +180*a(n-15) +120*a(n-16)

EXAMPLE

Some solutions for n=5

..0..2..1..3..1..2..0....1..0..2..1..2..1..2....3..4..2..3..2..4..1

..2..0..3..1..3..0..2....0..3..1..4..1..4..1....4..1..3..0..3..1..2

..0..2..1..3..1..2..0....1..0..2..1..2..1..2....3..4..2..3..2..4..1

..2..0..3..1..3..0..2....0..3..1..4..1..4..1....4..1..3..0..3..1..2

..0..2..1..3..1..2..0....3..2..4..3..4..3..4....2..3..1..2..1..3..0

..3..1..4..2..4..1..3....0..3..1..4..1..4..1....4..1..3..0..3..1..2

CROSSREFS

Sequence in context: A050413 A050544 A185516 * A252685 A255030 A255037

Adjacent sequences:  A235082 A235083 A235084 * A235086 A235087 A235088

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jan 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 13:38 EDT 2021. Contains 344948 sequences. (Running on oeis4.)