login
T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
8

%I #6 Jun 20 2022 21:09:31

%S 168,848,848,4352,4348,4352,22576,22936,22936,22576,117232,125196,

%T 126040,125196,117232,609412,685028,727376,727376,685028,609412,

%U 3167392,3780180,4212792,4548100,4212792,3780180,3167392,16467664,20896656,24652260

%N T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).

%C Table starts

%C 168 848 4352 22576 117232 609412

%C 848 4348 22936 125196 685028 3780180

%C 4352 22936 126040 727376 4212792 24652260

%C 22576 125196 727376 4548100 28470232 181669172

%C 117232 685028 4212792 28470232 192475088 1333866324

%C 609412 3780180 24652260 181669172 1333866324 10169860740

%C 3167392 20896656 144439680 1158928396 9228249720 77175918060

%C 16467664 116103776 851021376 7478244692 64770384460 600121202116

%C 85596352 646515740 5022415256 48319836696 454460234224 4656911119264

%C 445030452 3615891056 29788907152 315434737336 3229635581416

%H R. H. Hardin, <a href="/A235071/b235071.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: a(n) = 35*a(n-2) -235*a(n-4) +543*a(n-6) -458*a(n-8) +96*a(n-10).

%F k=2: [order 40].

%e Some solutions for n=3, k=4:

%e 0 2 1 5 3 3 5 4 5 6 0 2 4 6 4 0 1 0 4 3

%e 4 3 5 6 1 4 3 5 3 1 1 6 5 4 5 1 5 1 2 4

%e 3 5 4 2 0 5 1 0 1 2 0 2 4 6 4 0 1 0 4 3

%e 2 1 3 4 5 6 5 1 5 3 2 1 6 5 0 2 0 2 3 5

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 03 2014