login
T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
7

%I #6 Jun 20 2022 21:20:51

%S 172,916,916,5280,5112,5280,31944,32256,32256,31944,196148,229228,

%T 222672,229228,196148,1214044,1687256,1843956,1843956,1687256,1214044,

%U 7532324,12776172,16100096,19087908,16100096,12776172,7532324,46791008,97629440

%N T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).

%C Table starts

%C 172 916 5280 31944 196148 1214044

%C 916 5112 32256 229228 1687256 12776172

%C 5280 32256 222672 1843956 16100096 147975544

%C 31944 229228 1843956 19087908 208674708 2489486392

%C 196148 1687256 16100096 208674708 2873152132 44177186020

%C 1214044 12776172 147975544 2489486392 44177186020 914013128196

%C 7532324 97629440 1383273540 30119101476 691899662624 19044109453960

%C 46791008 752520988 13136508448 376753198536 11285218344244

%C 290776568 5824747252 125711250208 4734900474112

%H R. H. Hardin, <a href="/A234998/b234998.txt">Table of n, a(n) for n = 1..84</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 10].

%F k=2: [order 49].

%e Some solutions for n=2, k=4:

%e 3 2 5 4 3 4 0 3 0 3 4 6 1 6 0 3 4 5 1 0

%e 6 3 4 1 2 5 3 4 3 4 1 5 2 5 1 4 3 6 0 1

%e 1 0 3 2 5 4 0 3 4 3 0 2 1 6 0 3 4 5 1 0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 02 2014