login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1) X (1+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1

%I #7 Jun 20 2022 01:37:18

%S 172,916,5280,31944,196148,1214044,7532324,46791008,290776568,

%T 1807339968,11234293404,69833627132,434097609572,2698436446136,

%U 16774037447840,104270950787408,648170340713028,4029164730233420,25046145986188500

%N Number of (n+1) X (1+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).

%C Column 1 of A234998.

%H R. H. Hardin, <a href="/A234992/b234992.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) +21*a(n-2) -70*a(n-3) -144*a(n-4) +326*a(n-5) +381*a(n-6) -549*a(n-7) -351*a(n-8) +198*a(n-9) +54*a(n-10).

%e Some solutions for n=5:

%e 4 1 3 4 1 0 1 0 4 1 3 4 4 3 3 4 1 4 0 3

%e 6 5 2 1 0 1 5 2 1 0 1 0 0 1 2 5 0 1 3 4

%e 5 2 5 2 1 4 4 3 5 6 5 2 1 0 3 4 3 6 2 5

%e 6 1 4 3 2 3 5 6 3 2 6 5 0 1 2 5 2 3 5 6

%e 5 2 5 2 6 5 1 0 4 5 5 2 3 2 5 6 6 5 6 5

%e 6 5 1 0 0 1 4 5 1 4 6 5 4 1 0 3 0 1 5 6

%Y Column 1 of A234998.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 02 2014