Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Jan 02 2014 05:38:46
%S 182,1664,1664,14420,34862,14420,127982,684282,684282,127982,1127550,
%T 13888792,29606864,13888792,1127550,9962574,280501760,1373159910,
%U 1373159910,280501760,9962574,87941706,5681668040,62993589692
%N T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of the edge differences equal to 8
%C Table starts
%C ......182.........1664...........14420.............127982...............1127550
%C .....1664........34862..........684282...........13888792.............280501760
%C ....14420.......684282........29606864.........1373159910...........62993589692
%C ...127982.....13888792......1373159910.......148913665958........16062528821746
%C ..1127550....280501760.....62993589692.....16062528821746......4063185907422366
%C ..9962574...5681668040...2917193420904...1752801119273172...1047618966093964184
%C .87941706.115047739004.134849510289180.191417616710931012.270097938511601692116
%H R. H. Hardin, <a href="/A234982/b234982.txt">Table of n, a(n) for n = 1..112</a>
%F Empirical for column k:
%F k=1: a(n) = 9*a(n-1) +13*a(n-2) -134*a(n-3) +a(n-4) +480*a(n-5) -224*a(n-6) -96*a(n-7)
%F k=2: [order 31]
%e Some solutions for n=2 k=4
%e ..0..0..3..0..0....0..0..0..3..1....1..0..2..2..4....0..0..0..1..0
%e ..0..4..4..4..1....0..4..1..0..2....0..3..4..0..4....0..4..2..4..1
%e ..1..2..0..3..4....0..2..3..4..4....1..0..4..1..4....0..4..0..2..3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 02 2014