login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234921
T(n,k) is the number of (n+1) X (k+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
9
40, 120, 120, 376, 360, 376, 1200, 1128, 1128, 1200, 3848, 3912, 3684, 3912, 3848, 12360, 13368, 13336, 13336, 13368, 12360, 39720, 47980, 49056, 55492, 49056, 47980, 39720, 127664, 169128, 186500, 221272, 221272, 186500, 169128, 127664, 410344
OFFSET
1,1
COMMENTS
Table starts
40 120 376 1200 3848 12360 39720
120 360 1128 3912 13368 47980 169128
376 1128 3684 13336 49056 186500 710304
1200 3912 13336 55492 221272 990956 4151672
3848 13368 49056 221272 991144 4834440 22970144
12360 47980 186500 990956 4834440 28854040 150606424
39720 169128 710304 4151672 22970144 150606424 911837036
127664 615344 2755840 19178920 115287720 948274980 6251426440
410344 2208840 10693364 82629808 562322520 5093099972 39266933948
1318968 8101636 42087616 389619632 2874164624 33282246680 276635826688
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -2*a(n-2) -2*a(n-3) +a(n-4).
k=2: [order 13].
k=3: [order 19].
k=4: [order 54].
EXAMPLE
Some solutions for n=4, k=4:
3 2 1 2 1 2 3 0 3 0 4 3 1 3 4 3 0 1 2 3
2 3 0 3 0 1 4 3 4 3 3 4 0 4 3 4 3 2 1 0
3 2 1 2 1 2 3 4 3 4 4 3 1 3 0 3 4 1 2 3
0 1 2 1 2 1 0 3 4 3 3 4 0 4 3 2 1 0 3 2
1 0 3 0 3 4 1 2 1 2 0 3 1 3 4 3 0 1 2 3
CROSSREFS
Sequence in context: A235886 A261191 A260601 * A199807 A199810 A185762
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 01 2014
STATUS
approved