Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Jun 20 2022 21:17:12
%S 280,1720,1720,10344,12336,10344,65048,88092,88092,65048,395992,
%T 692608,734168,692608,395992,2497560,5287952,7067096,7067096,5287952,
%U 2497560,15235088,42777680,66054728,87088300,66054728,42777680,15235088,96142104
%N T(n,k) is the number of (n+1) X (k+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
%C Table starts
%C 280 1720 10344 65048 395992
%C 1720 12336 88092 692608 5287952
%C 10344 88092 734168 7067096 66054728
%C 65048 692608 7067096 87088300 1035687060
%C 395992 5287952 66054728 1035687060 15595734400
%C 2497560 42777680 672221348 13775604012 268581208108
%C 15235088 333040552 6570232248 175004599884 4410133393168
%C 96142104 2723879976 68704964500 2424540636888 80151723302880
%C 586688280 21343299552 683985508256 31723187334888
%C 3702734168 175549177208 7259539837372
%H R. H. Hardin, <a href="/A234911/b234911.txt">Table of n, a(n) for n = 1..84</a>
%F Empirical for column k:
%F k=1: a(n) = 55*a(n-2) -725*a(n-4) +3663*a(n-6) -7525*a(n-8) +6335*a(n-10) -1805*a(n-12).
%F k=2: [order 87].
%e Some solutions for n=2, k=4:
%e 2 1 0 2 1 4 6 2 5 3 2 6 1 6 4 2 1 0 4 0
%e 6 4 2 5 3 0 3 0 4 1 4 7 3 7 6 6 4 2 7 4
%e 7 6 5 7 4 3 5 3 6 4 2 6 1 4 2 3 2 1 5 3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 01 2014