login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234882
T(n,k) is the number of (n+1) X (k+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
9
32, 68, 68, 128, 148, 128, 268, 268, 268, 268, 512, 628, 472, 628, 512, 1068, 1188, 1116, 1116, 1188, 1068, 2048, 2944, 2096, 3336, 2096, 2944, 2048, 4268, 5684, 5316, 6364, 6364, 5316, 5684, 4268, 8192, 14604, 10240, 22748, 12208, 22748, 10240, 14604, 8192
OFFSET
1,1
COMMENTS
Table starts
32 68 128 268 512 1068 2048 4268 8192
68 148 268 628 1188 2944 5684 14604 28492
128 268 472 1116 2096 5316 10240 27060 52744
268 628 1116 3336 6364 22748 44540 178572 353428
512 1188 2096 6364 12208 44348 87312 354132 703104
1068 2944 5316 22748 44348 261384 518988 3695496 7370908
2048 5684 10240 44540 87312 518988 1035792 7389460 14782992
4268 14604 27060 178572 354132 3695496 7389460 98517200 197023228
8192 28492 52744 353428 703104 7370908 14782992 197023228 394703128
17068 74816 142876 1512256 3038716 57766200 115949340 2946513328 5899223932
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-2) -4*a(n-4).
k=2: [order 9].
k=3: [order 11].
k=4: [order 19].
k=5: [order 23].
k=6: [order 31].
k=7: [order 35].
EXAMPLE
Some solutions for n=4, k=4:
1 0 1 0 1 2 4 3 4 2 3 4 3 4 3 1 0 3 0 1
4 2 4 2 4 0 3 1 3 0 1 3 1 3 1 4 2 4 2 4
3 0 3 0 1 2 4 3 4 2 3 4 3 4 3 1 0 1 0 1
4 2 4 2 4 1 2 0 2 1 0 2 0 2 0 4 2 4 2 4
1 0 1 0 3 2 4 1 4 2 1 4 3 4 3 3 0 1 0 3
CROSSREFS
Sequence in context: A132773 A116349 A244341 * A043155 A039332 A043935
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 01 2014
STATUS
approved