%I #6 Jun 20 2022 19:19:08
%S 1068,2944,5316,22748,44348,261384,518988,3695496,7370908,57766200,
%T 115385628,946108608,1890889692,15833884200,31653386076,267691390256,
%U 535199912860,4547591259720,9092552526460,77436482160784,154832004875388
%N Number of (n+1) X (6+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
%H R. H. Hardin, <a href="/A234880/b234880.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +64*a(n-2) -64*a(n-3) -1774*a(n-4) +1774*a(n-5) +28396*a(n-6) -28396*a(n-7) -294326*a(n-8) +294326*a(n-9) +2094938*a(n-10) -2094938*a(n-11) -10579203*a(n-12) +10579203*a(n-13) +38573258*a(n-14) -38573258*a(n-15) -102289192*a(n-16) +102289192*a(n-17) +197108892*a(n-18) -197108892*a(n-19) -273632948*a(n-20) +273632948*a(n-21) +268830864*a(n-22) -268830864*a(n-23) -181152608*a(n-24) +181152608*a(n-25) +79213344*a(n-26) -79213344*a(n-27) -20157312*a(n-28) +20157312*a(n-29) +2257920*a(n-30) -2257920*a(n-31).
%e Some solutions for n=4:
%e 1 4 1 4 1 4 1 1 2 1 2 0 2 1 3 0 1 0 3 0 3
%e 0 2 0 2 0 2 0 2 4 2 4 3 4 2 4 2 4 2 4 2 4
%e 3 4 3 4 3 4 3 1 2 1 2 0 2 1 1 0 3 0 3 0 3
%e 1 3 1 3 1 3 1 2 4 2 4 3 4 2 4 2 4 2 4 2 4
%e 3 4 3 4 3 4 3 1 2 1 2 0 2 1 3 0 1 0 1 0 1
%Y Column 6 of A234882.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 01 2014