Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Feb 10 2024 03:43:33
%S 1,44,2800,181952,11835136,769854464,50077757440,3257475448832,
%T 211893401092096,13783315988086784,896581954180218880,
%U 58321176214542221312,3793696247386269024256,246773678989074187157504
%N Number of tilings of a box with sides 2 X 2 X 3n in R^3 by boxes of sides Tricube-V(3-dimensional dominoes).
%C a(n): Number of tilings of a box with sides 2 X 2 X 3n in R^3 by boxes of sides Tricube-V(3-dimensional dominoes).
%H S. Atacan and U. Koten, <a href="https://commons.wikimedia.org/wiki/File:Tricube-V.pdf">F(1,6,n)</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (68,-192).
%F a(n) = 68*a(n-1) - 192*a(n-2).
%F G.f.: (1-24*x)/(1-68*x+192*x^2). - _L. Edson Jeffery_, Dec 31 2013
%F a(n) = (2^(n-1)/C)*((-5+C)*(17-C)^n+(5+C)*(17+C)^n), where C = sqrt(241). - _L. Edson Jeffery_, Dec 31 2013
%e With the 16 tricube-V blocks in R^3 how many dfferent types of 2 X 2 X 12 sized volumetric regions can be attained?
%e For a(1)=44 and a(2)=2800, a(3)=68*a(2)-192*a(1)=68*2800-192*44=181952.
%K nonn,easy
%O 0,2
%A _Sila Atacan_, Dec 31 2013
%E a(5) and a(6) corrected and more terms added by _L. Edson Jeffery_, Dec 31 2013