Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 31 2013 06:40:07
%S 69,516,516,3843,9207,3843,28602,161631,161631,28602,212850,2826144,
%T 6566460,2826144,212850,1583955,49366557,263929692,263929692,49366557,
%U 1583955,11787201,862112943,10572386472,24157113543,10572386472
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with each 2X2 subblock having the number of clockwise edge increases less than or equal to the number of counterclockwise edge increases
%C Table starts
%C .......69.........516...........3843.............28602...............212850
%C ......516........9207.........161631...........2826144.............49366557
%C .....3843......161631........6566460.........263929692..........10572386472
%C ....28602.....2826144......263929692.......24157113543........2194611652359
%C ...212850....49366557....10572386472.....2194611652359......449708506898208
%C ..1583955...862112943...423046102605...198813266559054....91647618370398336
%C .11787201.15054585588.16922003634471.17991495416997300.18633171647248503816
%H R. H. Hardin, <a href="/A234832/b234832.txt">Table of n, a(n) for n = 1..199</a>
%F Empirical for column k:
%F k=1: a(n) = 9*a(n-1) -12*a(n-2) +3*a(n-3)
%F k=2: a(n) = 23*a(n-1) -102*a(n-2) +93*a(n-3) -9*a(n-4)
%F k=3: [order 13]
%F k=4: [order 28]
%F k=5: [order 92]
%e Some solutions for n=2 k=4
%e ..0..1..0..0..1....0..1..1..0..2....0..2..0..0..0....0..1..0..0..2
%e ..0..0..0..0..1....0..1..0..2..1....0..2..0..0..2....0..0..0..2..1
%e ..0..0..1..1..0....0..1..1..2..2....0..2..0..2..2....0..2..2..1..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 31 2013