login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 6 (constant-stress 1 X 1 tilings).
9

%I #6 Jun 20 2022 20:46:04

%S 168,686,686,2380,2220,2380,9716,6282,6282,9716,34092,22098,15224,

%T 22098,34092,139112,68570,47136,47136,68570,139112,493348,252486,

%U 131704,129384,131704,252486,493348,2011808,828354,443220,325424,325424,443220,828354

%N T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 6 (constant-stress 1 X 1 tilings).

%C Table starts

%C 168 686 2380 9716 34092 139112 493348 2011808

%C 686 2220 6282 22098 68570 252486 828354 3136350

%C 2380 6282 15224 47136 131704 443220 1352816 4791948

%C 9716 22098 47136 129384 325424 994812 2794776 9151956

%C 34092 68570 131704 325424 747192 2099300 5474032 16726940

%C 139112 252486 443220 994812 2099300 5441232 13185612 37597992

%C 493348 828354 1352816 2794776 5474032 13185612 29871848 79958916

%C 2011808 3136350 4791948 9151956 16726940 37597992 79958916 201644928

%C 7205628 10660586 15484360 27722816 47728392 100759412 202105408 481962668

%C 29360336 41107950 56779452 95289828 154893260 307659576 583797684 1320262800

%H R. H. Hardin, <a href="/A234823/b234823.txt">Table of n, a(n) for n = 1..197</a>

%F Empirical for column k (the k=2..6 recurrence also works for column 1; apparently all rows and columns satisfy the same order 23 recurrence):

%F k=1: [linear recurrence of order 7].

%F k=2..6: [same recurrence of order 23].

%e Some solutions for n=4, k=4:

%e 5 0 3 2 4 4 3 6 2 4 3 6 4 5 4 6 0 3 0 4

%e 2 3 0 5 1 1 6 3 5 1 5 2 6 1 6 3 3 0 3 1

%e 6 1 4 3 5 3 2 5 1 3 0 3 1 2 1 6 0 3 0 4

%e 2 3 0 5 1 1 6 3 5 1 4 1 5 0 5 3 3 0 3 1

%e 6 1 4 3 5 3 2 5 1 3 1 4 2 3 2 6 0 3 0 4

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 31 2013