Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 May 05 2016 21:11:54
%S 1,1,5,17,109,649,5285,44513,448861,4836601,58743125,766520657,
%T 10939702669,167136559849,2746173173765,48016925121473,
%U 893361709338301,17582667488919001,365487998075525045,7994319232001122097,183644125043688405229,4418905413530661307849
%N E.g.f. satisfies: A'(x) = 1 + A(x) + 2*A(x)^2, where A(0)=0.
%C a(n) = number of increasing ordered trees on the vertex set {1,2,...,n}, rooted at 1, in which all outdegrees are <= 2 and the vertices of degree 2 are colored either white or black. An example is given below. - _Peter Bala_, Sep 13 2015
%H F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://algo.inria.fr/flajolet/Publications/BeFlSa92.pdf">Varieties of increasing trees</a>, preprint.
%H F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://dx.doi.org/10.1007/3-540-55251-0_2">Varieties of increasing trees</a>, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
%F E.g.f.: Series_Reversion( Integral 1/(1 + x + 2*x^2) dx ).
%F E.g.f.: (sqrt(7)*tan(sqrt(7)*x/2 + arctan(1/sqrt(7)))-1)/4. - _Vaclav Kotesovec_, Jan 13 2014
%F a(n) ~ n! * 1/2*(sqrt(7)/(Pi - 2*arctan(1/sqrt(7))))^(n+1). - _Vaclav Kotesovec_, Jan 13 2014
%F O.g.f.: A(x) = x/(1-x - 2*1*2*x^2/(1-2*x - 2*2*3*x^2/(1-3*x - 2*3*4*x^2/(1-... -n*x - 2*n*(n+1)*x^2/(1- ...))))) (continued fraction). - _Paul D. Hanna_, Jun 12 2014
%F Let f(x) = 1 + x + 2*x^2. Then a(n+1) = (f(x)*d/dx)^n f(x) evaluated at x = 0. - _Peter Bala_, Sep 13 2015
%F G.f.: 1/T(0), where m=4; u=x; T(k)= 1 - u*(2*k+1) - m*u^2*(k+1)*(2*k+1)/( 1 - u*(2*k+2) - m*u^2*(k+1)*(2*k+3)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 07 2015
%F a(n) = 2^n*A(n, 1/2) where A(n,x) are the André polynomials. - _Peter Luschny_, May 05 2016
%e E.g.f.: A(x) = x + x^2/2! + 5*x^3/3! + 17*x^4/4! + 109*x^5/5! + 649*x^6/6! +...
%e Related series.
%e A(x)^2 = 2*x^2/2! + 6*x^3/3! + 46*x^4/4! + 270*x^5/5! + 2318*x^6/6! +...
%e a(4) = 17. The 17 plane (ordered) increasing unary-binary trees on 4 vertices are shown below. A * indicates the vertex of outdegree 2 may be colored either white or black.
%e ...................................................................
%e ..4................................................................
%e ..|................................................................
%e ..3..........4...4...............4...4...............3...3.........
%e ..|........./.....\............./.....\............./.....\........
%e ..2....2...3.......3...2...3...2.......2...3...4...2.......2...4...
%e ..|.....\./.........\./.....\./.........\./.....\./.........\./....
%e ..1......1*..........1*......1*..........1*......1*..........1*....
%e ...................................................................
%e ..3...4...4...3....................................................
%e ...\./.....\./.....................................................
%e ....2*......2*......................................................
%e ....|.......|......................................................
%e ....1.......1......................................................
%e ...................................................................
%e - _Peter Bala_, Sep 13 2015
%t Rest[FullSimplify[CoefficientList[Series[(Sqrt[7]*Tan[Sqrt[7]*x/2 + ArcTan[1/Sqrt[7]]]-1)/4, {x, 0, 20}], x] * Range[0, 20]!]] (* _Vaclav Kotesovec_, Jan 13 2014 *)
%t nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x*(2*k+1) - 4*x^2*(k+1)*(2*k+1)/( 1 - x*(2*k+2) - 4*x^2*(k+1)*(2*k+3)/g[k+1] ); CoefficientList[Series[1/g[0], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 15 2015, after _Sergei N. Gladkovskii_ *)
%o (PARI) {a(n)=local(A=x);for(i=1,n,A=intformal(1+A+2*A^2 +x*O(x^n))); n!*polcoeff(A,n)}
%o for(n=1,25,print1(a(n),", "))
%o (PARI) {a(n)=local(A=serreverse(intformal(1/(1+x+2*x^2 +x*O(x^n))))); n!*polcoeff(A,n)}
%o for(n=1,25,print1(a(n),", "))
%o (Sage)
%o @CachedFunction
%o def c(n,k) :
%o if n==k: return 1
%o if k<1 or k>n: return 0
%o return ((n-k)//2+1)*c(n-1,k-1)+k*c(n-1,k+1)
%o def A234797(n):
%o return add(c(n,k)*2^(n-k) for k in (0..n))
%o [A234797(n) for n in (1..22)] # _Peter Luschny_, Jun 10 2014
%Y Cf. A094503.
%K nonn,easy
%O 1,3
%A _Paul D. Hanna_, Jan 09 2014