login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1)X(2+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions but not both
1

%I #4 Dec 30 2013 15:55:05

%S 240,1624,9404,64180,398696,2678704,17095452,113639852,734839992,

%T 4854653704,31602975908,208063060500,1359127599368,8931080869632,

%U 58444233063876,383651997405084,2512900960515088,16486518956098136

%N Number of (n+1)X(2+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions but not both

%C Column 2 of A234769

%H R. H. Hardin, <a href="/A234763/b234763.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) +21*a(n-2) -252*a(n-3) +125*a(n-4) +1818*a(n-5) -2050*a(n-6) -4364*a(n-7) +6237*a(n-8) +2860*a(n-9) -5787*a(n-10) +336*a(n-11) +1311*a(n-12) -262*a(n-13)

%e Some solutions for n=4

%e ..0..0..2....1..3..1....3..1..0....2..2..0....3..0..2....1..1..1....0..1..3

%e ..2..1..2....2..3..2....2..2..3....0..1..0....2..1..2....2..3..2....2..2..2

%e ..2..0..2....1..1..2....3..1..0....2..1..2....0..1..0....2..1..2....3..1..3

%e ..1..1..2....2..0..3....3..2..0....0..1..0....2..2..3....2..3..2....3..2..3

%e ..2..0..2....2..1..2....0..1..1....0..2..3....3..1..3....1..3..1....0..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 30 2013