login
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both
8

%I #4 Dec 30 2013 15:44:18

%S 110,1014,1014,8968,26642,8968,80010,646036,646036,80010,712722,

%T 15939010,41065150,15939010,712722,6350732,392044622,2683721676,

%U 2683721676,392044622,6350732,56585338,9648827736,174451064914,469243923298

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both

%C Table starts

%C .....110.......1014...........8968.............80010...............712722

%C ....1014......26642.........646036..........15939010............392044622

%C ....8968.....646036.......41065150........2683721676.........174451064914

%C ...80010...15939010.....2683721676......469243923298.......81436516016562

%C ..712722..392044622...174451064914....81436516016562....37650372740746368

%C .6350732.9648827736.11352560005654.14155719250115192.17443322778721788150

%H R. H. Hardin, <a href="/A234760/b234760.txt">Table of n, a(n) for n = 1..144</a>

%F Empirical for column k:

%F k=1: a(n) = 8*a(n-1) +10*a(n-2) -16*a(n-3) -8*a(n-4) +4*a(n-5) +a(n-6)

%F k=2: [order 17]

%F k=3: [order 55]

%e Some solutions for n=2 k=4

%e ..0..0..3..2..3....0..0..2..3..3....0..0..1..1..1....0..0..1..1..0

%e ..0..1..2..2..1....0..1..2..2..3....0..0..0..0..1....0..0..1..0..1

%e ..0..0..3..1..0....0..0..0..1..1....0..0..0..0..2....1..0..0..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 30 2013