%I #6 Jun 20 2022 00:37:30
%S 119904,233016,423072,972888,2072256,5395128,13083552,37239960,
%T 99668544,302942136,872803872,2789946648,8503198656,28292814648,
%U 90149814432,309941744280,1023953849664,3617288003256,12314264477472,44498943619608
%N Number of (n+1) X (6+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 8 (constant-stress 1 X 1 tilings).
%H R. H. Hardin, <a href="/A234736/b234736.txt">Table of n, a(n) for n = 1..28</a>
%F Empirical: a(n) = 8*a(n-1) +53*a(n-2) -564*a(n-3) -888*a(n-4) +17184*a(n-5) -2382*a(n-6) -296784*a(n-7) +308859*a(n-8) +3196608*a(n-9) -5284083*a(n-10) -22169196*a(n-11) +48357478*a(n-12) +97763896*a(n-13) -273091508*a(n-14) -253071696*a(n-15) +976703832*a(n-16) +271829664*a(n-17) -2148744960*a(n-18) +304750080*a(n-19) +2640988800*a(n-20) -1133222400*a(n-21) -1378944000*a(n-22) +870912000*a(n-23).
%e Some solutions for n=1:
%e 4 6 5 7 1 6 5 7 2 5 2 7 0 5 5 7 2 7 3 7 2
%e 6 0 7 1 3 0 7 4 7 2 7 4 5 2 6 0 3 0 4 0 3
%Y Column 6 of A234738.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 30 2013